采样在机器学习方法中无处不在。由于大数据集和模型复杂性的增长,我们希望在训练A表示时学习和适应采样过程。为了实现这一宏伟的目标,已经提出了各种抽样技术。但是,他们中的大多数要么使用固定采样方案,要么基于简单的启发式方法调整采样方案。他们不能选择在不同阶段进行模型培训的最佳样本。受认知科学中的“思考,快速和系统2)的启发,我们提出了一种奖励指导的采样策略,称为自适应样本,并奖励(ASR)来应对这一挑战。据我们所知,这是利用强化学习(RL)解决代表学习中抽样问题的第一项工作。我们的方法最佳地调整了采样过程以实现最佳性能。我们通过基于距离的采样来探索样品之间的地理关系,以最大程度地提高整体累积奖励。我们将ASR应用于基于相似性的损失函数中的长期抽样问题。信息检索和聚类中的经验结果证明了ASR在不同数据集中的出色性能。我们还讨论了一种令人着迷的现象,我们将其称为实验中的“ ASR重力”。
translated by 谷歌翻译
Most regularized tensor regression research focuses on tensors predictors with scalars responses or vectors predictors to tensors responses. We consider the sparse low rank tensor on tensor regression where predictors $\mathcal{X}$ and responses $\mathcal{Y}$ are both high-dimensional tensors. By demonstrating that the general inner product or the contracted product on a unit rank tensor can be decomposed into standard inner products and outer products, the problem can be simply transformed into a tensor to scalar regression followed by a tensor decomposition. So we propose a fast solution based on stagewise search composed by contraction part and generation part which are optimized alternatively. We successfully demonstrate our method can out perform current methods in terms of accuracy, predictors selection by effectively incorporating the structural information.
translated by 谷歌翻译
元素是单细胞曲线的不相交和均匀的组,代表离散和高度颗粒细胞状态。现有的元算法倾向于仅使用一种模态来推断元素,即使单细胞多摩变数据集谱图在同一细胞内多个分子模态。在这里,我们提出\ textbf {c} ross-m \ textbf {o} dal \ textbf {e} mbedding for \ textbf {m} etacell标识(coem),它利用嵌入式空间,利用scatac-seq和scatac-seq和scatac-seq和SCRNA-SEQ执行聚合,平衡精细分辨率和足够的测序覆盖范围之间的权衡。COEM通过有效识别具有连续和离散细胞类型的数据集的准确且分离良好的元素来优于最先进的方法海科。此外,COEM显着改善了峰到基因的关联分析,并促进了复杂的基因调节推理任务。
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Designing better deep networks and better reinforcement learning (RL) algorithms are both important for deep RL. This work focuses on the former. Previous methods build the network with several modules like CNN, LSTM and Attention. Recent methods combine the Transformer with these modules for better performance. However, it requires tedious optimization skills to train a network composed of mixed modules, making these methods inconvenient to be used in practice. In this paper, we propose to design \emph{pure Transformer-based networks} for deep RL, aiming at providing off-the-shelf backbones for both the online and offline settings. Specifically, the Transformer in Transformer (TIT) backbone is proposed, which cascades two Transformers in a very natural way: the inner one is used to process a single observation, while the outer one is responsible for processing the observation history; combining both is expected to extract spatial-temporal representations for good decision-making. Experiments show that TIT can achieve satisfactory performance in different settings, consistently.
translated by 谷歌翻译
Abstractive dialogue summarization has long been viewed as an important standalone task in natural language processing, but no previous work has explored the possibility of whether abstractive dialogue summarization can also be used as a means to boost an NLP system's performance on other important dialogue comprehension tasks. In this paper, we propose a novel type of dialogue summarization task - STRUctured DiaLoguE Summarization - that can help pre-trained language models to better understand dialogues and improve their performance on important dialogue comprehension tasks. We further collect human annotations of STRUDEL summaries over 400 dialogues and introduce a new STRUDEL dialogue comprehension modeling framework that integrates STRUDEL into a graph-neural-network-based dialogue reasoning module over transformer encoder language models to improve their dialogue comprehension abilities. In our empirical experiments on two important downstream dialogue comprehension tasks - dialogue question answering and dialogue response prediction - we show that our STRUDEL dialogue comprehension model can significantly improve the dialogue comprehension performance of transformer encoder language models.
translated by 谷歌翻译
Much of the information of breathing is contained within the photoplethysmography (PPG) signal, through changes in venous blood flow, heart rate and stroke volume. We aim to leverage this fact, by employing a novel deep learning framework which is a based on a repurposed convolutional autoencoder. Our model aims to encode all of the relevant respiratory information contained within photoplethysmography waveform, and decode it into a waveform that is similar to a gold standard respiratory reference. The model is employed on two photoplethysmography data sets, namely Capnobase and BIDMC. We show that the model is capable of producing respiratory waveforms that approach the gold standard, while in turn producing state of the art respiratory rate estimates. We also show that when it comes to capturing more advanced respiratory waveform characteristics such as duty cycle, our model is for the most part unsuccessful. A suggested reason for this, in light of a previous study on in-ear PPG, is that the respiratory variations in finger-PPG are far weaker compared with other recording locations. Importantly, our model can perform these waveform estimates in a fraction of a millisecond, giving it the capacity to produce over 6 hours of respiratory waveforms in a single second. Moreover, we attempt to interpret the behaviour of the kernel weights within the model, showing that in part our model intuitively selects different breathing frequencies. The model proposed in this work could help to improve the usefulness of consumer PPG-based wearables for medical applications, where detailed respiratory information is required.
translated by 谷歌翻译
Tensor robust principal component analysis (RPCA), which seeks to separate a low-rank tensor from its sparse corruptions, has been crucial in data science and machine learning where tensor structures are becoming more prevalent. While powerful, existing tensor RPCA algorithms can be difficult to use in practice, as their performance can be sensitive to the choice of additional hyperparameters, which are not straightforward to tune. In this paper, we describe a fast and simple self-supervised model for tensor RPCA using deep unfolding by only learning four hyperparameters. Despite its simplicity, our model expunges the need for ground truth labels while maintaining competitive or even greater performance compared to supervised deep unfolding. Furthermore, our model is capable of operating in extreme data-starved scenarios. We demonstrate these claims on a mix of synthetic data and real-world tasks, comparing performance against previously studied supervised deep unfolding methods and Bayesian optimization baselines.
translated by 谷歌翻译
Pre-trained language models have achieved promising success in code retrieval tasks, where a natural language documentation query is given to find the most relevant existing code snippet. However, existing models focus only on optimizing the documentation code pairs by embedding them into latent space, without the association of external knowledge. In this paper, we propose a generation-augmented query expansion framework. Inspired by the human retrieval process - sketching an answer before searching, in this work, we utilize the powerful code generation model to benefit the code retrieval task. Specifically, we demonstrate that rather than merely retrieving the target code snippet according to the documentation query, it would be helpful to augment the documentation query with its generation counterpart - generated code snippets from the code generation model. To the best of our knowledge, this is the first attempt that leverages the code generation model to enhance the code retrieval task. We achieve new state-of-the-art results on the CodeSearchNet benchmark and surpass the baselines significantly.
translated by 谷歌翻译